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NOMENCLATURE 

diffusion coefficient ; 
diameter ; 
Friissling number, (Sh - 2)/RefSc+; 
mass transfer coefficient ; 
Reynolds number, dU,/v ; 
Schmidt number, v/D ; 
Sherwood number, kd/D ; 
stream velocity ; 
time average longitudinal fluctuating velocity. 

Greek symbols 
a,, apparent level of turbulence, fraction, [(u)‘]*/U_ ; 
P, dynamic viscosity ; 
V, kinematic viscosity ; 
P, density. 

Subscript 
co, free stream condition far removed from surface ; _ 
, barred quantities refer to average values. 

LEE AND Barrow [l] have recently presented a solution of 
the boundary-layer equations to calculate local heat and 
mass transfer coefficients from the forward stagnation point 
of a sphere to the point of separation. The local Sherwood 
number was integrated over the front half of the sphere to 
obtain an equation for the average Sherwood number: 

af = 0.976 Re0’5Sc0’33. (1) 

The authors’ experimental mass transfer data for naph- 
thalene, Frbssling’s [2] experimental data for naphthalene, 
and Xenakis’ [3] data for heat transfer to air were integrated 
to obtain an equation corresponding to equation (1). The 
resulting equation is : 

n, = l-02 Re0’5Sco’33. (2) 

The experimental data were also used to develop an 
equation for the rear half of the sphere. The equation 

Sh I = 00447 Re0.78Sco’33 (3) 

200-200000. The experimental data of Xenakis was also 
included with the two sets of data for naphthalene in this 
part of the study. 

There are two questions with respect to the analysis 
resulting in equations (2) and (3). 

1. The Xenakis data represent supercritical flow regime 
conditions, therefore, these data should not be included in a 
correlation with subcritical flow data. The naphthalene data 
represent a Reynolds number range of 136-25 350. 

2. Correlations for Sh - 2 are observed to result in a more 
linear relationship with Reynolds number than does Sh on 
a log-log plot. 

Another objection is that the analysis resulting in equation 
(1) is based upon an experimental pressure distribution for 
spheres at a Reynolds number of approximately 200000. 
This represents the transcritical flow regime and would not 
be applicable to the subcritical flow data. 

Galloway and Sage [4] analyzed the available experi- 
mental data for local heat and mass transfer from spheres 
and developed correlations for the prediction of local co- 
efficients as a function of Reynolds number, intensity of free 
stream turbulence, and polar angle. These correlations are 
based upon data in the Prandtl number range of 04-68 
[3, 5-81 and the Schmidt number range of 0.7-1210 [l, 
9-111 and for Reynolds numbers less than 150 000. The 
correlations are of the form : 

si;--2 0.16 
Fs = Re@5Sc0.33 

;=*Y” 
vi 

+ [Bada, + C) 

+ D] Re0’5Sco”667. (4) 

It is of interest to utilize the Galloway and Sage correlations 
for comparison with the conclusions of Lee and Barrow 
because this work represents experimental data over a wide 
range of Reynolds numbers, Prandtl-Schmidt numbers, and 
levels of free stream turbulence. The F&sling naphthalene 
data are included in the data used in obtaining the correla- 
tion. 

Forward halfof sphere 
Figure 1 shows the Sherwood number as a function of the was found to fit the data for the Reynolds number range of 
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FIG. 1. Comparison of local Sherwood numbers (for SC = 2.4). 

polar angle for Lee and Barrow equation (12) with the 
experimental data for naphthalene at Re = 25 000. A plot is 
also shown for Re = 25 000 at zero free stream turbulence 
as calculated from the Galloway and Sage table of co- 
efficients. This comparison indicates that the data were 
obtained under conditions of a low level of free stream 
turbulence. With assumptions of negligible kinematic 
viscosity gradient and zero free turbulence level, equation 
(4) reduces to : 

The additional assumption that (A + D Re0’5Sco lb6’) = 
constant is necessary to obtain an equation of the form of 
equations (1) and (2). This is shown by equation (6) : 

S/,, - 2 = (A + D &?.5SC@‘66’) &?‘5SC0’33 

= KRe”‘SSco~33. (6) 

The validity of these assumptions is indicated by comparing 
values of K from the Lee and Barrow equations with values 
calculated from the Galloway and Sage correlations. 

Table 1 

Source Re K 

Lee and Barrow- calculated 200000 0.976 
Lee and Barrow- -experimental 136-25 000 1.02 
Galloway and Sage 100 0.942 
Galloway and Sage 25000 1.06 
Galloway and Sage 200000 1.11 

R.? 

FIG. 2. Average Sherwood numbers for the front and rear 
hemisphere. 

These results indicate the magnitude of the error which 
results from the assumption that K is constant. It is observed 
that K for equation (2) is in the range that is predicted by 
the Galloway and Sage correlations at the experimental 
Reynolds numbers. Figure 2 shows equation (2) and the 
sli, - 2 vs. Re relationship calculated from the Galloway 
and Sage tables. The naphthalene data were recalculated to 
a ‘STi, - 2 basis and are shown. These data now appear to 
give a better fit with the Galloway and Sage relationship 
than with equation (2). 

Rear halfof sphere 
The local Sherwood numbers calculated from the 

Galloway and Sage coefficients for zero free stream turbu- 
lence can also be used for the rear half of the sphere. Average 
Sherwood numbers can be calculated for equation (5) with 
the Reynolds and Schmidt numbers as variables to evaluate 
an equation of the form : 

sr = 2 f a R&c’. (7) 

Calculation of a series of values of ?%, with SC = 1 and the 
Reynolds number range of 1~50000 gives the results 
shown by Fig. 2. The equation for the Reynolds number 
range greater than 500 is : 

ar = 2 + 0.035 Re”‘. (8) 

Calculation of a series of values of sh, with constant Rey- 
nolds number and a Schmidt number range of l-1000 
indicates an exponent of 0.42 for the Schmidt number. Thus 
the equation for the rear half of the sphere for a Reynolds 
number range of 500-50 Ooo is : 
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-53; , = 2 + 0035 Re0%~o~42. (9) 

Local Sherwood numbers from the Galloway and Sage 
correlation can also be integrated to obtain the average 
Sherwood number for the wake region and for the region 
between 90” and separation. It was found that these two 
average Sherwood numbers are approximately equal at 
Reynolds numbers from 100 to 10000. Thus equation (9) 
also represents the equation for the wake region. It is 
interesting to note that the @8 exponent for the Reynolds 
number is the same as is used for heat and mass transfer for 
turbulent flow in a circular pipe. Similarly, the @42 ex- 
ponent for the Schmidt number is the same as the exponent 
for experimental heat transfer data with the Prandtl number 
range of l-100. 

Figure 2 shows equations (3) and (9) with SC = 1. Data 
for naphthalene are shown as recalculated to a, - 2 for 
comparison with the equations and it is observed that the 
data represent a better fit with equation (9) than with 
equation (3). 

Equation (9) appears to be a general equation that can be 
used to represent the rear half of a sphere for subcritical flow 
conditions with the Reynolds number range of 500-50000 
and zero free stream turbulence. A general equation of the 
form of equation (6) for the forward half of the sphere does 
not appear to be feasible because of the dependence of K on 
the Reynolds and Prandtl-Schmidt numbers even at zero 
free stream turbulence. 
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